网站地图 |ENGLISH
人事师资

植物科学

当前位置:首 页> 人事师资 > 导师名录 > 植物科学 > 详细内容

谭保才, 院长

0531-88363592 0531-8856-5610 bctan@sdu.edu.cn

教育背景

起止时间                        学位             毕业院校                                专业学科

1992/09 - 1997/06           博士            佛罗里达大学(美国)         植物分子遗传学

1984/09 - 1987/06           硕士            兰州大学                                 植物生理学

1980/09 - 1984/06           学士            兰州大学                                 植物生理学    

 

工作经历

2013/12 -          山东大学生命科学学院                                     特聘教授,院长,泰山学者

2011/01 - 2013/12     香港中文大学深圳研究院                                 研究员

2007/12 - 2013/12     香港中文大学植物分子与农业技术研究所     研究副教授

2001/03 - 2007/12     佛罗里达大学癌症与遗传研究所                     研究助理教授

1997/07 - 2001/02     佛罗里达大学植物分子与细胞生物学             博士后

1992/08 - 1997/06     佛罗里达大学园艺科学系                                 研究助理

1987/06 - 1992/08     兰州大学生物系                                                 讲师

 

科研方向

1.种子发育的遗传调控机制

种子发育过程直接影响粮食作物的产量, 因此解析种子发育的分子遗传调控机制,既是植物分子遗传学的一个根本问题,也是农业生产高产育种的重要基础。种子发育涉及多个复杂的遗传调控网络,突变体是解析网络基因组成元件的重要遗传材料。我们利用Mutator转座子分离了大量的玉米种子发育突变体,也开发了相应的快速有效基因克隆方法。本研究旨在通过对突变体的遗传学、分子生物学和细胞生物学分析,克隆调控种子发育关键基因、揭示其分子功能、并解析其机制和调控网络,为分子育种提供理论基础。

2.类胡萝卜素的合成与代谢

维生素A是人类健康必需的营养元素,缺乏维生素A,轻则造成免疫力下降,重则造成夜盲、失明和发育受阻、甚至死亡。遗憾的是人体不能自主合成维生素A,必需靠食物摄取。植物中维生素A(proVitamin A)是维生素A的前体,可在小肠中转化为维生素A,维生素A原属于类胡萝卜素类物质。因此,本研究旨在研究类胡萝卜素的合成与代谢机制,为高维生素A原的谷物创建奠定基础。

3ABA合成的调控机制

植物激素ABA在种子休眠和环境应答中起关键作用,胁迫条件下植物可迅速合成ABA,调节一系列基因表达应对环境变化。但从植物感知胁迫到如何启动ABA合成的机制还不清楚。在胁迫条件下,ABA合成的关键基因NCED/Vp14的表达迅速升高。因此,本研究旨在通过对NCED/Vp14的分子生物学研究,探索ABA合成的上游调控基因和通路。

(招收以上各研究方向的硕士、博士研究生和博士后研究人员


主持课题

1. 2018-2020  玉米籽粒大小主要遗传网络的解析和分子机制研究,国家自然科学基金重大研究计划集成项目(主持.

2. 2017-2021 玉米种子发育关键PPR基因的功能和作用机理研究国家自然科学基金重点项目(主持).

3. 2015-2017  玉米籽粒形成关键基因的克隆和生物学功能分析国家自然科学基金重大研究计划重点项目(主持).

4. 2014-2016  Functional analysis of SMALL KERNEL 11 and identification of its interacting proteins, Hong Kong Research Grants Council (主持).

5. 2013-2015   Functional analysis of Empty pericarp 5 in maize seed development, Hong Kong Research Grants Council (主持).

6. 2012-2015   玉米小籽粒基因Smk2的克隆和功能分析,国家自然科学基金面上项目主持).

7. 2012-2014   Functional analysis of EMB15 in maize seed development, Hong Kong Research Grants Council (主持).

8. 2012-2016   Applied research of plant molecular biotechnology on modern agriculture, Shenzhen Peacock Scheme (共同主持).

9. 2011-2013   Functional analysis of SMK2 in maize, CUHK Shenzhen Research Institute Start-up Support Scheme (主持).

10. 2010-2012   Genetic and functional dissection of Emb12 and Emb14 in maize embryo development, Hong Kong Research Grants Council (主持).

 

代表性研究成果

*Corresponding author (通讯作者)

1. Zhang, Y.F., Suzuki, M., Sun, F., Tan, B.C.* (2017). The mitochondrial PENTATRICOPEPTIDE REPEAT 78 protein is required for nad5 mature mRNA stability in maize. Molecular Plant (In Press).

2. Yang, Y.Z., Ding, S., Wang, Y. Li, C.L., Shen, Y., Meeley, R., McCarty D.R., Tan, B.C.* (2017). Small kernel 2 encodes a glutaminase in Vitamin B6 biosynthesis and is essential for maize seed development. Plant Physiology 174: 1127-1138.

3. Cai, M., Li, S., Sun, F., Sun, Q., Zhao, H., Ren, X., Zhao, Y., Tan, B.C., Zhang, Z.,* Qiu, F.* (2017). Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. Plant Journal: 91: 132-144.

4. Tan, B.C., Guan, J.C., Ding, S., Wu, S., Koch, K.E., McCarty, D.R.* (2017). Wc Structure and origin of the White Cap locus and its role in evolution of grain color in maize. Genetics 206: 135-150. (Commentary: Thomas Peterson. (2017) Transposon Storm Kicks off a White CapGenetics 206: 87-89.)

5. Yang, Y.Z., Ding, S., Wang, H.C., Sun, F., Huang, W.L., Song, S., Xu, C.H., Tan, B.C.* (2017). The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize. New Phytologist 214: 782-795.

6. Xiu, Z., Sun, F., Shen, Y., Zhang, X., Jiang, R., Bonnard, G., Zhang, J., Tan, B.C.* (2016). EMPTY PERICARP16 is required for mitochondrial nad2 intron 4 cis-splicing and seed development in maize. Plant Journal 85: 507-519.

7. Li, C., Shen, Y., Meeley, R., McCarty, D.R., Tan, B.C.* (2015). Embryo defective 14 encodes a plastid-targeted cGTPase essential for embryogenesis in maize. Plant Journal 84: 785-799.

8. Sun, F., Wang, X., Bonnard, G., Shen,Y., Xiu, Z., Li, X., Gao, D., Zhang, Z., Tan, B.C.* (2015). Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. Plant Journal 84: 283-295.

9. Chen, Y., Tan, B.C.* (2015). New insight in the Gibberellin biosynthesis and signal transduction. Plant Signaling & Behavior 10:5, e1000140

10. Chen, Y., Hou, M., Liu, L., Wu, S., Shen, Y., Ishiyama, K., Kobayashi, M., McCarty, D.R., Tan, B.C.* (2014). The maize DWARF1 encodes a Gibberellin 3-oxidase and is dual-localized to the nucleus and cytosol. Plant Physiology 166: 2028-2039.

11. Li, X.J., Zhang, Y.F., Hou, M.M., Sun, F., Shen, Y., Xiu, Z.H., Wang, X.M., Chen, Z.L., Sun, S.S.M., Small, I., Tan, B.C.* (2014). Small kernel1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize and rice. Plant Journal 79: 797–809.

12. Yang, Y.Z., Tan, B.C.* (2014). A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis. PLoS One 9: e87283.

13. Zhang, Y.F., Hou, M.M., Tan, B.C.* (2013). The requirement of WHIRLY1 for embryogenesis is dependent on genetic background in maize. PLoS One 8: e67369.

14. Shen, Y., Li, C., Meeley, R., McCarty, D.R., Tan, B.C.* (2013). Embryo defective12 encodes translation initiation factor3 and is essential to maize embryogenesis. Plant Journal 74: 792-804.

15. Liu, Y., Xiu, Z.H., Meeley, R., Tan, B.C.* (2013). Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell 25: 868-883.

16. Tan, B.C.*, Chen, Z., Shen, Y., Zhang, Y., Lai, J., Sun, S.S.M. (2011). Identification of an active new Mutator transposable element in maize. Genes Genome Genetics 1: 293-302.

17. Messing, S.A., Gabelli, S.B., Echeverria, I., Vogel, J.T., Guan, J.C., Tan, B.C., Klee, H.J., McCarty, D.R., Amzel, L.M. (2010). Structural insights into maize Viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell 22: 2970-2980.

18. Vogel, J.T., Tan, B.C., McCarty, D.R., Klee, H.J. (2008). The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J. Biol. Chem. 283: 11364-1137.

19. Settles, A.M. Holding, D.R., Tan, B.C., et al., (2007). Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8: 116-124.

20. McCarty, D.R., Settles, A.M., Suzuki, M., Tan, B.C., Latshaw, S., Porch, T., Robin, K., Baier, J., Avigne, W., Lai, J., Messing, J., Koch, K.E., Hannah, L.C. (2005) Steady-state transposon mutagenesis in inbred maize. Plant Journal 44: 52-61.

21. Tan, B.C.*, Joseph, L.M., Deng, W.T., Liu, L.J., Li, Q.B., Cline, K., McCarty, D.R. (2003). Molecular characterization of the Arabidopsis nine-cis expoxycarotenoid dioxygenase gene family. Plant Journal 35: 44-56.

22. Tan, B.C.*, Cline, K., McCarty, D.R. (2001). Localization and targeting of VP14 epoxy-carotenoid dioxygenase to the chloroplast membrane. Plant Journal 27: 373-382.

23. Tan, B.C., Schwartz, S., Zeevaart, J.A., McCarty, D.R.* (1997). Genetic control of abscisic acid synthesis in maize. Proc. Natl. Acad. Sci. USA 94: 12235-12240.

24. Schwartz, S.*, Tan, B.C.*, (*Co-first author), Gage, D.A., Zeevaart, J.A., McCarty, D.R.* (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872-1875. 


奖励   

1. Award of Excellence in Graduate Research, University of Florida, 1998 (佛罗里达大学优秀博士毕业论文奖)  

上一位:孙峰
下一位:田会玉